How can I find the Transfer Function having Magnitude(dB), Phase(de... (2024)

9 views (last 30 days)

Show older comments

Liang Kar Yan on 10 Dec 2021

  • Link

    Direct link to this question

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz

  • Link

    Direct link to this question

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz

Commented: Liang Kar Yan on 14 Dec 2021

Accepted Answer: Mathieu NOE

  • TF.m

I have 3 individual files which are Magnitude(dB), Phase(degrees) and Frequency(Hz) in excel. I need to find the transfer function with these data. After getting the transfer function, I need to plot back the graph (magnitude and phase) from transfer function to compare with my data.

I wish to get something like the picture attached below.

How can I find the Transfer Function having Magnitude(dB), Phase(de... (2)

5 Comments

Show 3 older commentsHide 3 older comments

Mathieu NOE on 13 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1884430

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1884430

hello

can you also provide the 3 exel files ?

Liang Kar Yan on 13 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1884575

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1884575

  • Frequency.xlsx
  • Magnitude.xlsx
  • Phase.xlsx

Hi sure,

Thank you so much.

Star Strider on 13 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1884825

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1884825

Open in MATLAB Online

Something is definitely wrong with these data!

They do not describe a frequency-response function —

Freq = readmatrix('https://www.mathworks.com/matlabcentral/answers/uploaded_files/833095/Frequency.xlsx')

Freq = 2001×1

100.0000 100.1000 100.2000 100.3000 100.4000 100.5000 100.6000 100.7000 100.8000 100.9000

Magn = readmatrix('https://www.mathworks.com/matlabcentral/answers/uploaded_files/833100/Magnitude.xlsx')

Magn = 2001×1

-43.9413 -43.8619 -43.7825 -43.7031 -43.6236 -43.5442 -43.4648 -43.3853 -43.3059 -43.2265

Phse = readmatrix('https://www.mathworks.com/matlabcentral/answers/uploaded_files/833105/Phase.xlsx')

Phse = 2001×1

111.3686 105.0197 98.6691 92.3168 85.9627 79.6068 73.2493 66.8899 60.5289 54.1661

cplxv = Magn .* exp(1j*deg2rad(Phse))

cplxv =

16.0107 -40.9206i 11.3669 -42.3634i 6.5992 -43.2823i 1.7667 -43.6673i -3.0714 -43.5154i -7.8555 -42.8298i -12.5269 -41.6205i -17.0287 -39.9038i -21.3058 -37.7023i -25.3064 -35.0444i -28.9819 -31.9643i -32.2879 -28.5010i -35.1848 -24.6983i -37.6381 -20.6041i -39.6186 -16.2698i -41.1034 -11.7495i -42.0755 - 7.0997i -42.5244 - 2.3783i -42.4460 + 2.3563i -41.8430 + 7.0453i -40.7241 +11.6309i -39.1050 +16.0565i -37.0070 +20.2678i -34.4576 +24.2132i -31.4897 +27.8445i -28.1415 +31.1175i -24.4557 +33.9927i -20.4791 +36.4355i -16.2619 +38.4169i -11.8574 +39.9135i -7.3210 +40.9082i -2.7095 +41.3902i 1.9193 +41.3548i 6.5078 +40.8043i 10.9987 +39.7469i 15.3364 +38.1974i 19.4671 +36.1767i 23.3398 +33.7114i 26.9069 +30.8337i 30.1248 +27.5810i 32.9543 +23.9949i 35.3611 +20.1215i 37.3163 +16.0102i 38.7969 +11.7132i 39.7858 + 7.2851i 40.2720 + 2.7817i 40.2511 - 1.7402i 39.7249 - 6.2236i 38.7016 -10.6124i 37.1955 -14.8517i 35.2273 -18.8886i 32.8231 -22.6729i 30.0145 -26.1578i 26.8383 -29.3004i 23.3357 -32.0620i 19.5518 -34.4090i 15.5354 -36.3132i 11.3379 -37.7519i 7.0128 -38.7085i 2.6154 -39.1723i -1.7986 -39.1392i -6.1732 -38.6110i -10.4532 -37.5962i -14.5846 -36.1092i -18.5157 -34.1703i -22.1971 -31.8056i -25.5830 -29.0465i -28.6314 -25.9293i -31.3046 -22.4948i -33.5700 -18.7877i -35.4000 -14.8559i -36.7728 -10.7503i -37.6725 - 6.5238i -38.0891 - 2.2304i -38.0190 + 2.0748i -37.4647 + 6.3369i -36.4348 +10.5016i -34.9442 +14.5163i -33.0133 +18.3301i -30.6683 +21.8949i -27.9407 +25.1661i -24.8665 +28.1028i -21.4863 +30.6685i -17.8444 +32.8316i -13.9883 +34.5659i -9.9683 +35.8505i -5.8363 +36.6705i -1.6458 +37.0170i 2.5491 +36.8871i 6.6947 +36.2842i 10.7379 +35.2177i 14.6269 +33.7028i 18.3123 +31.7606i 21.7473 +29.4175i 24.8887 +26.7052i 27.6969 +23.6599i 30.1370 +20.3219i 32.1786 +16.7354i 33.7970 +12.9476i 34.9726 + 9.0079i 35.6919 + 4.9679i 35.9471 + 0.8802i 35.7367 - 3.2023i 35.0649 - 7.2268i 33.9421 -11.1413i 32.3845 -14.8955i 30.4138 -18.4414i 28.0570 -21.7337i 25.3461 -24.7307i 22.3175 -27.3944i 19.0118 -29.6916i 15.4728 -31.5936i 11.7474 -33.0771i 7.8847 -34.1245i 3.9356 -34.7236i -0.0483 -34.8683i -4.0149 -34.5583i -7.9126 -33.7994i -11.6908 -32.6031i -15.3006 -30.9866i -18.6956 -28.9725i -21.8322 -26.5886i -24.6704 -23.8675i -27.1741 -20.8459i -29.3118 -17.5646i -31.0569 -14.0674i -32.3881 -10.4009i -33.2893 - 6.6138i -33.7505 - 2.7563i -33.7672 + 1.1209i -33.3409 + 4.9668i -32.4787 + 8.7309i -31.1938 +12.3642i -29.5046 +15.8194i -27.4347 +19.0517i -25.0130 +22.0194i -22.2726 +24.6845i -19.2509 +27.0129i -15.9887 +28.9754i -12.5300 +30.5474i -8.9211 +31.7097i -5.2104 +32.4485i -1.4471 +32.7557i 2.3188 +32.6289i 6.0375 +32.0714i 9.6599 +31.0924i 13.1385 +29.7063i 16.4279 +27.9331i 19.4851 +25.7979i 22.2705 +23.3303i 24.7483 +20.5643i 26.8868 +17.5380i 28.6589 +14.2923i 30.0425 +10.8714i 31.0208 + 7.3215i 31.5823 + 3.6901i 31.7213 + 0.0260i 31.4375 - 3.6220i 30.7365 - 7.2052i 29.6292 -10.6763i 28.1320 -13.9894i 26.2665 -17.1008i 24.0590 -19.9700i 21.5404 -22.5595i 18.7456 -24.8359i 15.7131 -26.7700i 12.4844 -28.3373i 9.1035 -29.5183i 5.6163 -30.2988i 2.0699 -30.6700i -1.4879 -30.6285i -5.0092 -30.1766i -8.4471 -29.3221i -11.7556 -28.0780i -14.8909 -26.4627i -17.8116 -24.4994i -20.4793 -22.2159i -22.8590 -19.6443i -24.9201 -16.8205i -26.6360 -13.7834i -27.9850 -10.5750i -28.9505 - 7.2391i -29.5211 - 3.8213i -29.6908 - 0.3681i -29.4588 + 3.0737i -28.8301 + 6.4576i -27.8147 + 9.7383i -26.4282 +12.8717i -24.6907 +15.8160i -22.6274 +18.5322i -20.2675 +20.9845i -17.6443 +23.1407i -14.7945 +24.9728i -11.7578 +26.4575i -8.5761 +27.5759i -5.2934 +28.3145i -1.9545 +28.6649i 1.3947 +28.6240i 4.7087 +28.1940i 7.9425 +27.3824i 11.0524 +26.2021i 13.9967 +24.6706i 16.7358 +22.8103i 19.2333 +20.6481i 21.4561 +18.2148i 23.3752 +15.5448i 24.9655 +12.6757i 26.2069 + 9.6474i 27.0839 + 6.5023i 27.5860 + 3.2837i 27.7080 + 0.0362i 27.4501 - 3.1958i 26.8173 - 6.3679i 25.8200 - 9.4369i 24.4735 -12.3611i 22.7980 -15.1011i 20.8178 -17.6200i 18.5615 -19.8843i 16.0614 -21.8638i 13.3531 -23.5327i 10.4746 -24.8694i 7.4665 -25.8569i 4.3708 -26.4833i 1.2305 -26.7415i -1.9109 -26.6297i -5.0098 -26.1510i -8.0239 -25.3138i -10.9117 -24.1312i -13.6340 -22.6212i -16.1539 -20.8062i -18.4373 -18.7127i -20.4538 -16.3709i -22.1767 -13.8145i -23.5835 -11.0798i -24.6560 - 8.2057i -25.3810 - 5.2326i -25.7500 - 2.2023i -25.7596 + 0.8429i -25.4112 + 3.8605i -24.7114 + 6.8087i -23.6716 + 9.6468i -22.3078 +12.3359i -20.6406 +14.8391i -18.6946 +17.1226i -16.4983 +19.1553i -14.0835 +20.9103i -11.4849 +22.3642i -8.7397 +23.4983i -5.8869 +24.2982i -2.9670 +24.7543i -0.0211 +24.8618i 2.9094 +24.6210i 5.7836 +24.0368i 8.5615 +23.1191i 11.2045 +21.8824i 13.6764 +20.3455i 15.9432 +18.5315i 17.9740 +16.4671i 19.7415 +14.1826i 21.2221 +11.7111i 22.3965 + 9.0883i 23.2494 + 6.3519i 23.7706 + 3.5409i 23.9543 + 0.6954i 23.7995 - 2.1446i 23.3102 - 4.9388i 22.4947 - 7.6482i 21.3663 -10.2349i 19.9425 -12.6629i 18.2448 -14.8988i 16.2985 -16.9118i 14.1325 -18.6747i 11.7784 -20.1636i 9.2706 -21.3590i 6.6453 -22.2452i 3.9404 -22.8113i 1.1946 -23.0508i -1.5529 -22.9620i -4.2630 -22.5479i -6.8976 -21.8158i -9.4195 -20.7778i -11.7934 -19.4503i -13.9862 -17.8535i -15.9678 -16.0116i -17.7108 -13.9521i -19.1918 -11.7054i -20.3908 - 9.3044i -21.2923 - 6.7843i -21.8849 - 4.1817i -22.1616 - 1.5340i -22.1203 + 1.1205i -21.7630 + 3.7440i -21.0965 + 6.2991i -20.1320 + 8.7494i -18.8848 +11.0606i -17.3743 +13.2001i -15.6234 +15.1383i -13.6585 +16.8482i -11.5089 +18.3067i -9.2066 +19.4940i -6.7852 +20.3946i -4.2803 +20.9968i -1.7283 +21.2938i 0.8337 +21.2828i 3.3690 +20.9655i 5.8410 +20.3481i 8.2145 +19.4412i 10.4558 +18.2593i 12.5332 +16.8210i 14.4177 +15.1483i 16.0829 +13.2667i 17.5061 +11.2044i 18.6679 + 8.9923i 19.5530 + 6.6632i 20.1499 + 4.2513i 20.4516 + 1.7921i 20.4553 - 0.6786i 20.1625 - 3.1248i 19.5791 - 5.5113i 18.7151 - 7.8036i 17.5846 - 9.9691i 16.2054 -11.9769i 14.5990 -13.7988i 12.7898 -15.4091i 10.8055 -16.7857i 8.6757 -17.9098i 6.4323 -18.7663i 4.1087 -19.3443i 1.7391 -19.6368i -0.6416 -19.6412i -2.9985 -19.3588i -5.2975 -18.7956i -7.5052 -17.9611i -9.5899 -16.8692i -11.5217 -15.5372i -13.2731 -13.9859i -14.8196 -12.2393i -16.1397 -10.3241i -17.2151 - 8.2692i -18.0315 - 6.1056i -18.5785 - 3.8656i -18.8493 - 1.5827i -18.8417 + 0.7096i -18.5572 + 2.9773i -18.0016 + 5.1874i -17.1847 + 7.3075i -16.1198 + 9.3070i -14.8242 +11.1571i -13.3181 +12.8314i -11.6250 +14.3061i -9.7710 +15.5607i -7.7843 +16.5779i -5.6949 +17.3440i -3.5345 +17.8491i -1.3353 +18.0872i 0.8700 +18.0563i 3.0486 +17.7585i 5.1684 +17.1996i 7.1984 +16.3894i 9.1089 +15.3414i 10.8724 +14.0725i 12.4635 +12.6028i 13.8595 +10.9553i 15.0409 + 9.1555i 15.9913 + 7.2310i 16.6979 + 5.2112i 17.1517 + 3.1267i 17.3473 + 1.0088i 17.2833 - 1.1106i 16.9622 - 3.2000i 16.3903 - 5.2284i 15.5776 - 7.1659i 14.5376 - 8.9840i 13.2872 -10.6564i 11.8463 -12.1589i 10.2375 -13.4700i 8.4860 -14.5712i 6.6188 -15.4473i 4.6645 -16.0866i 2.6529 -16.4807i 0.6146 -16.6253i -1.4198 -16.5197i -3.4198 -16.1669i -5.3554 -15.5737i -7.1981 -14.7505i -8.9206 -13.7109i -10.4978 -12.4720i -11.9068 -11.0535i -13.1275 - 9.4780i -14.1424 - 7.7699i -14.9377 - 5.9560i -15.5026 - 4.0641i -15.8299 - 2.1234i -15.9163 - 0.1633i -15.7617 + 1.7863i -15.3701 + 3.6962i -14.7487 + 5.5376i -13.9083 + 7.2831i -12.8631 + 8.9070i -11.6300 +10.3852i -10.2290 +11.6964i -8.6822 +12.8216i -7.0140 +13.7449i -5.2505 +14.4536i -3.4190 +14.9382i -1.5477 +15.1927i 0.3346 +15.2147i 2.1992 +15.0052i 4.0180 +14.5688i 5.7634 +13.9137i 7.4094 +13.0510i 8.9315 +11.9953i 10.3072 +10.7638i 11.5165 + 9.3765i 12.5419 + 7.8554i 13.3689 + 6.2246i 13.9862 + 4.5096i 14.3855 + 2.7374i 14.5621 + 0.9352i 14.5148 - 0.8691i 14.2456 - 2.6478i 13.7600 - 4.3740i 13.0668 - 6.0214i 12.1780 - 7.5653i 11.1084 - 8.9827i 9.8757 -10.2526i 8.4996 -11.3563i 7.0023 -12.2781i 5.4077 -13.0048i 3.7407 -13.5265i 2.0275 -13.8365i 0.2949 -13.9313i -1.4304 -13.8108i -3.1218 -13.4784i -4.7534 -12.9403i -6.3005 -12.2063i -7.7397 -11.2888i -9.0494 -10.2034i -10.2102 - 8.9677i -11.2052 - 7.6019i -12.0199 - 6.1279i -12.6429 - 4.5693i -13.0659 - 2.9507i -13.2834 - 1.2976i -13.2935 + 0.3642i -13.0973 + 2.0088i -12.6992 + 3.6108i -12.1068 + 5.1455i -11.3303 + 6.5897i -10.3831 + 7.9213i -9.2811 + 9.1205i -8.0423 +10.1694i -6.6870 +11.0526i -5.2370 +11.7575i -3.7155 +12.2742i -2.1468 +12.5959i -0.5555 +12.7189i 1.0332 +12.6424i 2.5947 +12.3690i 4.1046 +11.9043i 5.5398 +11.2567i 6.8781 +10.4376i 8.0994 + 9.4609i 9.1853 + 8.3430i 10.1196 + 7.1022i 10.8886 + 5.7589i 11.4815 + 4.3348i 11.8900 + 2.8527i 12.1089 + 1.3363i 12.1361 - 0.1903i 11.9723 - 1.7031i 11.6214 - 3.1784i 11.0902 - 4.5932i 10.3882 - 5.9257i 9.5276 - 7.1553i 8.5229 - 8.2635i 7.3911 - 9.2334i 6.1507 -10.0508i 4.8221 -10.7037i 3.4269 -11.1830i 1.9874 -11.4821i 0.5269 -11.5976i -0.9316 -11.5289i -2.3648 -11.2782i -3.7504 -10.8507i -5.0666 -10.2544i -6.2930 - 9.4999i -7.4109 - 8.6002i -8.4032 - 7.5705i -9.2549 - 6.4280i -9.9536 - 5.1916i -10.4890 - 3.8816i -10.8538 - 2.5194i -11.0433 - 1.1268i -11.0558 + 0.2736i -10.8920 + 1.6595i -10.5560 + 3.0090i -10.0540 + 4.3008i -9.3954 + 5.5147i -8.5916 + 6.6318i -7.6564 + 7.6349i -6.6058 + 8.5089i -5.4571 + 9.2405i -4.2295 + 9.8190i -2.9432 +10.2363i -1.6190 +10.4867i -0.2785 +10.5673i 1.0567 +10.4780i 2.3652 +10.2213i 3.6263 + 9.8026i 4.8201 + 9.2296i 5.9278 + 8.5126i 6.9321 + 7.6640i 7.8178 + 6.6984i 8.5712 + 5.6321i 9.1813 + 4.4830i 9.6391 + 3.2700i 9.9383 + 2.0132i 10.0752 + 0.7332i 10.0486 - 0.5494i 9.8601 - 1.8137i 9.5138 - 3.0395i 9.0164 - 4.2073i 8.3769 - 5.2985i 7.6067 - 6.2962i 6.7191 - 7.1847i 5.7292 - 7.9504i 4.6539 - 8.5818i 3.5109 - 9.0696i 2.3195 - 9.4068i 1.0992 - 9.5889i -0.1301 - 9.6142i -1.3482 - 9.4832i -2.5355 - 9.1991i -3.6729 - 8.7676i -4.7423 - 8.1968i -5.7267 - 7.4967i -6.6106 - 6.6798i -7.3804 - 5.7601i -8.0244 - 4.7533i -8.5328 - 3.6764i -8.8983 - 2.5475i -9.1159 - 1.3852i -9.1831 - 0.2089i -9.0998 + 0.9622i -8.8683 + 2.1090i -8.4936 + 3.2129i -7.9827 + 4.2561i -7.3448 + 5.2220i -6.5913 + 6.0953i -5.7354 + 6.8623i -4.7917 + 7.5112i -3.7764 + 8.0321i -2.7065 + 8.4173i -1.6001 + 8.6615i -0.4754 + 8.7617i 0.6487 + 8.7170i 1.7540 + 8.5294i 2.8223 + 8.2028i 3.8362 + 7.7436i 4.7796 + 7.1601i 5.6372 + 6.4630i 6.3957 + 5.6645i 7.0430 + 4.7783i 7.5694 + 3.8198i 7.9669 + 2.8052i 8.2298 + 1.7518i 8.3548 + 0.6771i 8.3407 - 0.4009i 8.1887 - 1.4644i 7.9022 - 2.4958i 7.4870 - 3.4784i 6.9507 - 4.3960i 6.3030 - 5.2341i 5.5556 - 5.9792i 4.7214 - 6.6196i 3.8149 - 7.1454i 2.8517 - 7.5486i 1.8481 - 7.8234i 0.8211 - 7.9660i -0.2121 - 7.9750i -1.2342 - 7.8512i -2.2282 - 7.5975i -3.1779 - 7.2191i -4.0676 - 6.7230i -4.8829 - 6.1183i -5.6108 - 5.4160i -6.2397 - 4.6283i -6.7598 - 3.7690i -7.1630 - 2.8530i -7.4435 - 1.8960i -7.5974 - 0.9141i -7.6230 + 0.0759i -7.5207 + 1.0574i -7.2930 + 2.0140i -6.9447 + 2.9300i -6.4825 + 3.7901i -5.9147 + 4.5804i -5.2518 + 5.2880i -4.5054 + 5.9016i -3.6886 + 6.4115i -2.8158 + 6.8099i -1.9018 + 7.0909i -0.9625 + 7.2504i -0.0137 + 7.2865i 0.9284 + 7.1997i 1.8481 + 6.9920i 2.7300 + 6.6679i 3.5594 + 6.2335i 4.3228 + 5.6970i 5.0076 + 5.0681i 5.6028 + 4.3580i 6.0990 + 3.5793i 6.4884 + 2.7456i 6.7651 + 1.8714i 6.9252 + 0.9718i 6.9668 + 0.0622i 6.8900 - 0.8420i 6.6968 - 1.7255i 6.3913 - 2.5733i 5.9795 - 3.3714i 5.4689 - 4.1064i 4.8691 - 4.7665i 4.1907 - 5.3407i 3.4457 - 5.8200i 2.6475 - 6.1968i 1.8097 - 6.4653i 0.9471 - 6.6218i 0.0745 - 6.6642i -0.7933 - 6.5926i -1.6413 - 6.4089i -2.4554 - 6.1172i -3.2217 - 5.7229i -3.9276 - 5.2336i -4.5613 - 4.6582i -5.1125 - 4.0072i -5.5723 - 3.2921i -5.9334 - 2.5256i -6.1903 - 1.7212i -6.3392 - 0.8930i -6.3783 - 0.0552i -6.3077 + 0.7777i -6.1293 + 1.5914i -5.8467 + 2.3721i -5.4657 + 3.1065i -4.9932 + 3.7825i -4.4382 + 4.3887i -3.8106 + 4.9151i -3.1216 + 5.3532i -2.3837 + 5.6960i -1.6097 + 5.9382i -0.8134 + 6.0763i -0.0084 + 6.1086i 0.7911 + 6.0352i 1.5715 + 5.8580i 2.3194 + 5.5808i 3.0220 + 5.2090i 3.6675 + 4.7495i 4.2452 + 4.2110i 4.7454 + 3.6033i 5.1599 + 2.9372i 5.4822 + 2.2247i 5.7071 + 1.4785i 5.8316 + 0.7117i 5.8539 - 0.0623i 5.7744 - 0.8300i 5.5950 - 1.5780i 5.3196 - 2.2936i 4.9535 - 2.9645i 4.5036 - 3.5793i 3.9783 - 4.1276i 3.3872 - 4.6003i 2.7410 - 4.9897i 2.0513 - 5.2895i 1.3304 - 5.4950i 0.5911 - 5.6032i -0.1537 - 5.6128i -0.8908 - 5.5242i -1.6075 - 5.3397i -2.2914 - 5.0629i -2.9306 - 4.6994i -3.5143 - 4.2560i -4.0327 - 3.7410i -4.4769 - 3.1637i -4.8398 - 2.5348i -5.1154 - 1.8654i -5.2994 - 1.1677i -5.3891 - 0.4541i -5.3836 + 0.2630i -5.2835 + 0.9707i -5.0911 + 1.6568i -4.8103 + 2.3094i -4.4467 + 2.9171i -4.0072 + 3.4695i -3.4998 + 3.9573i -2.9339 + 4.3721i -2.3200 + 4.7072i -1.6690 + 4.9571i -0.9926 + 5.1179i -0.3030 + 5.1873i 0.3876 + 5.1646i 1.0669 + 5.0507i 1.7232 + 4.8481i 2.3448 + 4.5611i 2.9209 + 4.1950i 3.4418 + 3.7570i 3.8984 + 3.2551i 4.2830 + 2.6986i 4.5893 + 2.0976i 4.8121 + 1.4632i 4.9482 + 0.8067i 4.9955 + 0.1399i 4.9537 - 0.5252i 4.8241 - 1.1770i 4.6095 - 1.8038i 4.3141 - 2.3946i 3.9437 - 2.9393i 3.5052 - 3.4282i 3.0070 - 3.8531i 2.4581 - 4.2067i 1.8687 - 4.4831i 1.2494 - 4.6778i 0.6116 - 4.7877i -0.0334 - 4.8115i -0.6739 - 4.7491i -1.2985 - 4.6022i -1.8962 - 4.3737i -2.4564 - 4.0683i -2.9693 - 3.6919i -3.4260 - 3.2515i -3.8186 - 2.7554i -4.1403 - 2.2128i -4.3859 - 1.6336i -4.5513 - 1.0285i -4.6340 - 0.4085i -4.6330 + 0.2153i -4.5486 + 0.8317i -4.3830 + 1.4295i -4.1394 + 1.9982i -3.8226 + 2.5276i -3.4389 + 3.0085i -2.9953 + 3.4324i -2.5002 + 3.7920i -1.9629 + 4.0812i -1.3932 + 4.2951i -0.8015 + 4.4302i -0.1987 + 4.4846i 0.4044 + 4.4576i 0.9968 + 4.3502i 1.5678 + 4.1647i 2.1073 + 3.9048i 2.6057 + 3.5757i 3.0541 + 3.1836i 3.4447 + 2.7360i 3.7707 + 2.2412i 4.0265 + 1.7085i 4.2079 + 1.1477i 4.3119 + 0.5691i 4.3370 - 0.0167i 4.2831 - 0.5991i 4.1517 - 1.1674i 3.9455 - 1.7114i 3.6685 - 2.2214i 3.3263 - 2.6883i 2.9253 - 3.1037i 2.4731 - 3.4603i 1.9782 - 3.7520i 1.4498 - 3.9737i 0.8977 - 4.1217i 0.3322 - 4.1937i -0.2365 - 4.1888i -0.7979 - 4.1073i -1.3419 - 3.9512i -1.8585 - 3.7236i -2.3384 - 3.4290i -2.7730 - 3.0732i -3.1547 - 2.6630i -3.4766 - 2.2060i -3.7332 - 1.7109i -3.9200 - 1.1869i -4.0339 - 0.6438i -4.0733 - 0.0916i -4.0376 + 0.4596i -3.9280 + 0.9995i -3.7466 + 1.5184i -3.4973 + 2.0068i -3.1849 + 2.4559i -2.8154 + 2.8576i -2.3959 + 3.2047i -1.9343 + 3.4910i -1.4393 + 3.7117i -0.9201 + 3.8628i -0.3865 + 3.9420i 0.1517 + 3.9481i 0.6845 + 3.8812i 1.2022 + 3.7430i 1.6951 + 3.5362i 2.1544 + 3.2651i 2.5717 + 2.9349i 2.9394 + 2.5519i 3.2510 + 2.1235i 3.5010 + 1.6577i 3.6849 + 1.1635i 3.7997 + 0.6499i 3.8435 + 0.1266i 3.8158 - 0.3965i 3.7174 - 0.9100i 3.5504 - 1.4042i 3.3183 - 1.8700i 3.0255 - 2.2991i 2.6778 - 2.6834i 2.2819 - 3.0161i 1.8453 - 3.2912i 1.3763 - 3.5038i 0.8837 - 3.6502i 0.3769 - 3.7280i -0.1348 - 3.7359i -0.6416 - 3.6741i -1.1343 - 3.5441i -1.6037 - 3.3485i -2.0411 - 3.0912i -2.4385 - 2.7773i -2.7886 - 2.4129i -3.0851 - 2.0049i -3.3226 - 1.5611i -3.4969 - 1.0901i -3.6050 - 0.6006i -3.6452 - 0.1019i -3.6169 + 0.3965i -3.5210 + 0.8855i -3.3594 + 1.3558i -3.1355 + 1.7987i -2.8537 + 2.2060i -2.5195 + 2.5702i -2.1393 + 2.8847i -1.7205 + 3.1437i -1.2711 + 3.3426i -0.7996 + 3.4777i -0.3149 + 3.5470i 0.1737 + 3.5491i 0.6571 + 3.4845i 1.1262 + 3.3545i 1.5722 + 3.1618i 1.9868 + 2.9102i 2.3624 + 2.6048i 2.6918 + 2.2514i 2.9692 + 1.8569i 3.1894 + 1.4289i 3.3485 + 0.9756i 3.4438 + 0.5056i 3.4735 + 0.0278i 3.4375 - 0.4487i 3.3366 - 0.9148i 3.1729 - 1.3619i 2.9497 - 1.7815i 2.6715 - 2.1658i 2.3437 - 2.5075i 1.9727 - 2.8005i 1.5657 - 3.0393i 1.1305 - 3.2195i 0.6755 - 3.3379i 0.2092 - 3.3925i -0.2592 - 3.3825i -0.7211 - 3.3083i -1.1675 - 3.1714i -1.5902 - 2.9747i -1.9810 - 2.7221i -2.3328 - 2.4186i -2.6389 - 2.0701i -2.8936 - 1.6835i -3.0923 - 1.2661i -3.2313 - 0.8261i -3.3082 - 0.3719i -3.3218 + 0.0879i -3.2718 + 0.5443i -3.1596 + 0.9888i -2.9875 + 1.4128i -2.7588 + 1.8084i -2.4782 + 2.1681i -2.1512 + 2.4851i -1.7841 + 2.7535i -1.3841 + 2.9682i -0.9590 + 3.1254i -0.5170 + 3.2223i -0.0665 + 3.2570i 0.3838 + 3.2293i 0.8252 + 3.1397i 1.2493 + 2.9901i 1.6480 + 2.7837i 2.0138 + 2.5246i 2.3398 + 2.2178i 2.6197 + 1.8694i 2.8484 + 1.4862i 3.0216 + 1.0757i 3.1361 + 0.6458i 3.1899 + 0.2048i 3.1822 - 0.2387i 3.1132 - 0.6761i 2.9845 - 1.0992i 2.7986 - 1.4998i 2.5594 - 1.8702i -2.6497 + 1.7303i -2.3923 + 2.0638i -2.0933 + 2.3596i -1.7581 + 2.6127i -1.3927 + 2.8187i -1.0038 + 2.9741i -0.5982 + 3.0763i -0.1832 + 3.1235i 0.2337 + 3.1151i 0.6453 + 3.0514i 1.0442 + 2.9336i 1.4233 + 2.7641i 1.7759 + 2.5459i 2.0960 + 2.2830i 2.3778 + 1.9803i 2.6164 + 1.6432i 2.8077 + 1.2778i 2.9484 + 0.8907i 3.0362 + 0.4888i 3.0695 + 0.0794i 3.0480 - 0.3303i 2.9722 - 0.7328i 2.8435 - 1.1212i 2.6644 - 1.4884i 2.4381 - 1.8280i 2.1690 - 2.1340i 1.8618 - 2.4009i 1.5221 - 2.6242i 1.1562 - 2.7999i 0.7706 - 2.9249i 0.3722 - 2.9972i -0.0317 - 3.0157i -0.4340 - 2.9800i -0.8273 - 2.8910i -1.2048 - 2.7504i -1.5596 - 2.5608i -1.8855 - 2.3257i -2.1766 - 2.0496i -2.4279 - 1.7373i -2.6348 - 1.3947i -2.7939 - 1.0279i -2.9022 - 0.6435i -2.9581 - 0.2487i -2.9606 + 0.1496i -2.9098 + 0.5442i -2.8067 + 0.9280i -2.6533 + 1.2940i -2.4524 + 1.6357i -2.2079 + 1.9471i -1.9242 + 2.2226i -1.6065 + 2.4572i -1.2605 + 2.6469i -0.8928 + 2.7883i -0.5098 + 2.8790i -0.1185 + 2.9174i 0.2739 + 2.9030i 0.6603 + 2.8361i 1.0338 + 2.7181i 1.3877 + 2.5512i 1.7156 + 2.3385i 2.0116 + 2.0840i 2.2705 + 1.7923i 2.4875 + 1.4689i 2.6589 + 1.1196i 2.7817 + 0.7509i 2.8537 + 0.3695i 2.8737 - 0.0177i 2.8415 - 0.4037i 2.7578 - 0.7814i 2.6241 - 1.1440i 2.4431 - 1.4849i 2.2181 - 1.7980i 1.9533 - 2.0777i 1.6535 - 2.3189i 1.3244 - 2.5173i 0.9719 - 2.6694i 0.6025 - 2.7726i 0.2230 - 2.8249i -0.1596 - 2.8257i -0.5385 - 2.7749i -0.9066 - 2.6736i -1.2574 - 2.5237i -1.5844 - 2.3282i -1.8817 - 2.0905i -2.1440 - 1.8152i -2.3665 - 1.5074i -2.5452 - 1.1727i -2.6769 - 0.8173i -2.7594 - 0.4477i -2.7912 - 0.0708i -2.7719 + 0.3065i -2.7018 + 0.6774i -2.5824 + 1.0351i -2.4159 + 1.3729i -2.2055 + 1.6849i -1.9551 + 1.9653i -1.6693 + 2.2090i -1.3536 + 2.4116i -1.0137 + 2.5695i -0.6560 + 2.6799i -0.3158 + 3.0160i 0.0951 + 3.0247i 0.5027 + 2.9779i 0.8994 + 2.8764i 1.2780 + 2.7226i 1.6316 + 2.5192i 1.9539 + 2.2704i 2.2389 + 1.9807i 2.4816 + 1.6557i 2.6778 + 1.3015i 2.8238 + 0.9246i 2.9173 + 0.5322i 2.9566 + 0.1314i 2.9413 - 0.2702i 2.8719 - 0.6654i 2.7496 - 1.0468i 2.5771 - 1.4075i 2.3577 - 1.7408i 2.0956 - 2.0408i 1.7957 - 2.3019i 1.4637 - 2.5196i 1.1058 - 2.6899i 0.7288 - 2.8098i 0.3397 - 2.8773i -0.0543 - 2.8914i -0.4458 - 2.8518i -0.8277 - 2.7596i -1.1930 - 2.6166i -1.5348 - 2.4256i -1.8470 - 2.1904i -2.1238 - 1.9153i -2.3603 - 1.6057i -2.5521 - 1.2673i -2.6960 - 0.9066i -2.7892 - 0.5303i -2.8304 - 0.1455i -2.8188 + 0.2408i -2.7549 + 0.6212i -2.6399 + 0.9888i -2.4763 + 1.3368i -2.2671 + 1.6588i -2.0164 + 1.9488i -1.7291 + 2.2016i -1.4104 + 2.4125i -1.0666 + 2.5778i -0.7040 + 2.6945i -0.3294 + 2.7606i 0.0501 + 2.7750i 0.4274 + 2.7376i 0.7955 + 2.6493i 1.1476 + 2.5117i 1.4772 + 2.3278i 1.7781 + 2.1009i 2.0449 + 1.8354i 2.2726 + 1.5365i 2.4571 + 1.2098i 2.5951 + 0.8615i 2.6841 + 0.4982i 2.7226 + 0.1266i 2.7100 - 0.2462i 2.6467 - 0.6132i 2.5340 - 0.9677i 2.3742 - 1.3029i 2.1703 - 1.6128i 1.9263 - 1.8914i 1.6470 - 2.1338i 1.3376 - 2.3354i 1.0039 - 2.4925i 0.6524 - 2.6025i 0.2897 - 2.6632i -0.0774 - 2.6737i -0.4420 - 2.6339i -0.7973 - 2.5447i -1.1365 - 2.4080i -1.4534 - 2.2263i -1.7420 - 2.0032i -1.9971 - 1.7431i -2.2138 - 1.4509i -2.3882 - 1.1322i -2.5172 - 0.7930i -2.5983 - 0.4398i -2.6303 - 0.0793i -2.6126 + 0.2817i -2.5456 + 0.6364i -2.4307 + 0.9782i -2.2703 + 1.3005i -2.0675 + 1.5974i -1.8262 + 1.8634i -1.5510 + 2.0935i -1.2472 + 2.2834i -0.9206 + 2.4296i -0.5775 + 2.5295i -0.2243 + 2.5812i 0.1321 + 2.5841i 0.4852 + 2.5379i 0.8281 + 2.4439i 1.1545 + 2.3038i 1.4582 + 2.1204i 1.7335 + 1.8973i 1.9752 + 1.6388i 2.1789 + 1.3499i 2.3407 + 1.0361i 2.4578 + 0.7034i 2.5278 + 0.3581i 2.5498 + 0.0070i 2.5232 - 0.3435i 2.4488 - 0.6865i 2.3280 - 1.0157i 2.1632 - 1.3248i 1.9578 - 1.6080i 1.7155 - 1.8599i 1.4413 - 2.0758i 1.1402 - 2.2517i 0.8181 - 2.3843i 0.4813 - 2.4712i 0.1360 - 2.5108i -0.2111 - 2.5025i -0.5533 - 2.4466i -0.8842 - 2.3441i -1.1975 - 2.1971i -1.4872 - 2.0086i -1.7479 - 1.7822i -1.9746 - 1.5222i -2.1631 - 1.2338i -2.3099 - 0.9225i -2.4123 - 0.5942i -2.4683 - 0.2553i -2.4770 + 0.0877i -2.4384 + 0.4283i -2.3531 + 0.7600i -2.2231 + 1.0764i -2.0508 + 1.3715i -1.8396 + 1.6398i -1.5936 + 1.8760i -1.3176 + 2.0758i -1.0170 + 2.2355i -0.6975 + 2.3519i -0.3654 + 2.4231i -0.0269 + 2.4476i 0.3114 + 2.4251i 0.6431 + 2.3561i 0.9617 + 2.2421i 1.2612 + 2.0852i 1.5358 + 1.8887i 1.7804 + 1.6562i 1.9903 + 1.3924i 2.1615 + 1.1024i 2.2909 + 0.7918i 2.3759 + 0.4666i 2.4150 + 0.1330i 2.4076 - 0.2025i 2.3539 - 0.5334i 2.2550 - 0.8534i 2.1128 - 1.1563i 1.9303 - 1.4364i 1.7109 - 1.6882i 1.4589 - 1.9070i 1.1793 - 2.0887i 0.8775 - 2.2297i 0.5593 - 2.3275i 0.2310 - 2.3801i -0.1012 - 2.3868i -0.4308 - 2.3473i -0.7515 - 2.2626i -1.0570 - 2.1344i -1.3416 - 1.9651i -1.5997 - 1.7582i -1.8265 - 1.5177i -2.0175 - 1.2483i -2.1691 - 0.9552i -2.2785 - 0.6442i -2.3436 - 0.3213i -2.3633 + 0.0073i -2.3371 + 0.3351i -2.2657 + 0.6559i -2.1506 + 0.9634i -1.9940 + 1.2517i -1.7990 + 1.5152i -1.5695 + 1.7489i -1.3100 + 1.9482i -1.0254 + 2.1095i -0.7215 + 2.2295i -0.4041 + 2.3060i -0.0794 + 2.3377i 0.2462 + 2.3239i 0.5666 + 2.2649i 0.8754 + 2.1621i 1.1666 + 2.0175i 1.4348 + 1.8338i 1.6745 + 1.6149i 1.8813 + 1.3648i 2.0512 + 1.0887i 2.1808 + 0.7918i 2.2678 + 0.4800i 2.3105 + 0.1593i 2.3082 - 0.1639i 2.2608 - 0.4834i 2.1696 - 0.7930i 2.0361 - 1.0866i 1.8633 - 1.3585i 1.6543 - 1.6036i 1.4134 - 1.8169i 1.1454 - 1.9945i 0.8554 - 2.1329i 0.5491 - 2.2294i 0.2327 - 2.2823i -0.0879 - 2.2905i -0.4062 - 2.2540i -0.7160 - 2.1734i -1.0114 - 2.0506i -1.2866 - 1.8878i -1.5362 - 1.6884i -1.7554 - 1.4562i -1.9399 - 1.1959i -2.0861 - 0.9126i -2.1913 - 0.6119i -2.2535 - 0.2997i -2.2714 + 0.0180i -2.2448 + 0.3348i -2.1743 + 0.6446i -2.0612 + 0.9413i -1.9079 + 1.2191i -1.7175 + 1.4726i -1.4936 + 1.6968i -1.2408 + 1.8874i -0.9640 + 2.0407i -0.6687 + 2.1538i -0.3607 + 2.2244i -0.0460 + 2.2512i 0.2691 + 2.2338i 0.5785 + 2.1725i 0.8760 + 2.0686i 1.1559 + 1.9242i 1.4127 + 1.7422i 1.6414 + 1.5261i 1.8374 + 1.2804i 1.9970 + 1.0098i 2.1171 + 0.7198i 2.1954 + 0.4159i 2.2303 + 0.1043i 2.2213 - 0.2089i 2.1685 - 0.5175i 2.0730 - 0.8156i 1.9369 - 1.0971i 1.7627 - 1.3567i 1.5541 - 1.5891i 1.3151 - 1.7899i 1.0504 - 1.9551i 0.7654 - 2.0815i 0.4657 - 2.1667i 0.1572 - 2.2090i -0.1540 - 2.2076i -0.4617 - 2.1626i -0.7599 - 2.0749i -1.0427 - 1.9464i -1.3045 - 1.7796i -1.5402 - 1.5778i -1.7451 - 1.3451i -1.9152 - 1.0861i -2.0472 - 0.8060i -2.1386 - 0.5103i -2.1875 - 0.2048i -2.1930 + 0.1042i -2.1551 + 0.4109i -2.0746 + 0.7089i -1.9531 + 0.9926i -1.7930 + 1.2562i -1.5976 + 1.4946i -1.3708 + 1.7030i -1.1172 + 1.8774i -0.8417 + 2.0144i -0.5498 + 2.1112i -0.2474 + 2.1660i 0.0595 + 2.1778i 0.3648 + 2.1463i 0.6625 + 2.0723i 0.9467 + 1.9572i 1.2117 + 1.8033i 1.4523 + 1.6139i 1.6638 + 1.3926i 1.8419 + 1.1439i 1.9832 + 0.8727i 2.0848 + 0.5846i 2.1449 + 0.2852i 2.1622 - 0.0195i 2.1365 - 0.3235i 2.0683 - 0.6206i 1.9590 - 0.9050i 1.8108 - 1.1711i 1.6268 - 1.4135i 1.4105 - 1.6274i 1.1665 - 1.8087i 0.8994 - 1.9537i 0.6148 - 2.0595i 0.3183 - 2.1242i 0.0158 - 2.1464i -0.2867 - 2.1258i -0.5831 - 2.0628i -0.8675 - 1.9588i -1.1342 - 1.8157i -1.3780 - 1.6366i -1.5940 - 1.4250i -1.7778 - 1.1852i -1.9260 - 0.9220i -2.0354 - 0.6407i -2.1041 - 0.3469i -2.1306 - 0.0466i -2.1145 + 0.2543i -2.0561 + 0.5498i -1.9567 + 0.8340i -1.8182 + 1.1011i -1.6435 + 1.3458i -1.4361 + 1.5634i -1.2002 + 1.7494i -0.9406 + 1.9001i -0.6624 + 2.0126i -0.3713 + 2.0846i -0.0731 + 2.1148i 0.2263 + 2.1026i 0.5207 + 2.0482i 0.8044 + 1.9529i 1.0716 + 1.8185i 1.3170 + 1.6477i 1.5357 + 1.4441i 1.7233 + 1.2118i 1.8761 + 0.9554i 1.9911 + 0.6801i 2.0659 + 0.3915i 2.0992 + 0.0954i 2.0903 - 0.2023i 2.0394 - 0.4956i 1.9475 - 0.7786i 1.8167 - 1.0457i 1.6494 - 1.2914i 1.4492 - 1.5108i 1.2200 - 1.6996i 0.9666 - 1.8540i 0.6940 - 1.9710i 0.4078 - 2.0481i 0.1136 - 2.0839i -0.1824 - 2.0777i -0.4745 - 2.0297i -0.7567 - 1.9408i -1.0233 - 1.8129i -1.2690 - 1.6487i -1.4888 - 1.4514i -1.6784 - 1.2251i -1.8339 - 0.9743i -1.9522 - 0.7042i -2.0311 - 0.4202i -2.0689 - 0.1280i -2.0649 + 0.1664i -2.0192 + 0.4572i -1.9328 + 0.7384i -1.8074 + 1.0043i -1.6457 + 1.2497i -1.4510 + 1.4696i -1.2272 + 1.6595i -0.9788 + 1.8157i -0.7109 + 1.9350i -0.4289 + 2.0150i -0.1386 + 2.0542i 0.1542 + 2.0519i 0.4436 + 2.0080i 0.7236 + 1.9235i 0.9887 + 1.8002i 1.2335 + 1.6406i 1.4531 + 1.4480i 1.6429 + 1.2263i 1.7993 + 0.9800i 1.9191 + 0.7141i 1.9998 + 0.4340i 2.0400 + 0.1455i 2.0387 - 0.1457i 1.9961 - 0.4336i 1.9131 - 0.7124i 1.7914 - 0.9764i 1.6334 - 1.2203i 1.4426 - 1.4392i 1.2226 - 1.6286i 0.9781 - 1.7848i 0.7140 - 1.9046i 0.4357 - 1.9855i 0.1488 - 2.0261i -0.1407 - 2.0254i -0.4271 - 1.9836i -0.7045 - 1.9016i -0.9672 - 1.7809i -1.2100 - 1.6242i -1.4279 - 1.4347i -1.6165 - 1.2162i -1.7721 - 0.9732i -1.8914 - 0.7107i -1.9721 - 0.4340i -2.0126 - 0.1487i -2.0120 + 0.1392i -1.9705 + 0.4240i -1.8889 + 0.6998i -1.7690 + 0.9611i -1.6131 + 1.2025i -1.7638 - 0.4602i -1.8132 - 0.1977i -1.8237 + 0.0693i -1.7950 + 0.3351i -1.7278 + 0.5941i -1.6233 + 0.8406i -1.4839 + 1.0694i -1.3124 + 1.2755i -1.1125 + 1.4544i -0.8885 + 1.6022i -0.6451 + 1.7158i -0.3876 + 1.7926i -0.1214 + 1.8309i 0.1476 + 1.8299i 0.4138 + 1.7896i 0.6714 + 1.7107i 0.9147 + 1.5949i 1.1387 + 1.4447i 1.3384 + 1.2632i 1.5095 + 1.0544i 1.6483 + 0.8226i 1.7517 + 0.5729i 1.8175 + 0.3106i 1.8442 + 0.0414i 1.8312 - 0.2290i 1.7788 - 0.4947i 1.6880 - 0.7500i 1.5607 - 0.9894i 1.3997 - 1.2077i 1.2083 - 1.4002i 0.9907 - 1.5626i 0.7516 - 1.6915i 0.4960 - 1.7840i 0.2295 - 1.8382i -0.0421 - 1.8527i -0.3131 - 1.8272i -0.5775 - 1.7624i -0.8297 - 1.6594i -1.0642 - 1.5205i -1.2760 - 1.3487i -1.4603 - 1.1476i -1.6132 - 0.9216i -1.7315 - 0.6755i -1.8124 - 0.4147i -1.8542 - 0.1446i -1.8560 + 0.1287i -1.8177 + 0.3995i -1.7400 + 0.6618i -1.6247 + 0.9100i -1.4742 + 1.1387i -1.2918 + 1.3429i -1.0812 + 1.5183i -0.8472 + 1.6609i -0.5946 + 1.7677i -0.3291 + 1.8363i -0.0562 + 1.8652i 0.2180 + 1.8538i 0.4877 + 1.8022i 0.7470 + 1.7116i 0.9903 + 1.5839i 1.2122 + 1.4219i 1.4081 + 1.2289i 1.5735 + 1.0092i 1.7050 + 0.7676i 1.7996 + 0.5092i 1.8553 + 0.2396i 1.8708 - 0.0353i 1.8457 - 0.3096i 1.7806 - 0.5773i 1.6769 - 0.8327i 1.5368 - 1.0700i 1.3633 - 1.2843i 1.1602 - 1.4709i 0.9318 - 1.6256i 0.6830 - 1.7451i 0.4194 - 1.8269i 0.1465 - 1.8690i -0.1296 - 1.8705i -0.4031 - 1.8315i -0.6679 - 1.7527i -0.9183 - 1.6358i -1.1488 - 1.4833i -1.3545 - 1.2986i -1.5308 - 1.0856i -1.6740 - 0.8489i -1.7808 - 0.5938i -1.8490 - 0.3256i -1.8769 - 0.0503i -1.8642 + 0.2262i -1.8108 + 0.4979i -1.7182 + 0.7588i -1.5881 + 1.0032i -1.4234 + 1.2260i -1.2278 + 1.4221i -1.0054 + 1.5873i -0.7610 + 1.7181i -0.5001 + 1.8115i -0.2282 + 1.8655i 0.0487 + 1.8789i 0.3246 + 1.8514i 0.5935 + 1.7836i 0.8495 + 1.6769i 1.0871 + 1.5337i 1.3010 + 1.3571i 1.4866 + 1.1509i 1.6399 + 0.9196i 1.7574 + 0.6683i 1.8367 + 0.4023i 1.8760 + 0.1276i 1.8743 - 0.1500i 1.8318 - 0.4243i 1.7494 - 0.6894i 1.6288 - 0.9395i 1.4727 - 1.1691i 1.2845 - 1.3733i 1.0682 - 1.5475i 0.8287 - 1.6879i 0.5710 - 1.7915i 0.3009 - 1.8560i 0.0241 - 1.8801i -0.2531 - 1.8631i -0.5248 - 1.8054i -0.7851 - 1.7083i -1.0282 - 1.5739i -1.2488 - 1.4051i -1.4422 - 1.2057i -1.6041 - 0.9799i -1.7309 - 0.7327i -1.8199 - 0.4695i -1.8691 - 0.1961i -1.8774 + 0.0816i -1.8448 + 0.3574i -1.7717 + 0.6255i -1.6600 + 0.8798i -1.5120 + 1.1149i -1.3309 + 1.3256i -1.1208 + 1.5072i -0.8861 + 1.6559i -0.6321 + 1.7683i -0.3643 + 1.8420i -0.0886 + 1.8754i 0.1890 + 1.8677i 0.4625 + 1.8192i 0.7257 + 1.7308i 0.9731 + 1.6046i 1.1991 + 1.4432i 1.3987 + 1.2503i 1.5677 + 1.0300i 1.7023 + 0.7872i 1.7996 + 0.5273i 1.8575 + 0.2558i 1.8746 - 0.0212i 1.8506 - 0.2977i 1.7861 - 0.5676i 1.6824 - 0.8250i 1.5419 - 1.0642i 1.3676 - 1.2800i 1.1634 - 1.4677i 0.9337 - 1.6231i 0.6836 - 1.7429i 0.4186 - 1.8244i 0.1444 - 1.8659i -0.1328 - 1.8664i -0.4070 - 1.8259i -0.6722 - 1.7454i -0.9225 - 1.6266i -1.1525 - 1.4721i -1.3571 - 1.2854i -1.5318 - 1.0705i -1.6729 - 0.8321i -1.7771 - 0.5756i -1.8422 - 0.3065i -1.8669 - 0.0308i -1.8505 + 0.2455i -1.7934 + 0.5162i -1.6970 + 0.7756i -1.5633 + 1.0177i -1.3953 + 1.2374i -1.1966 + 1.4298i -0.9718 + 1.5906i -0.7257 + 1.7164i -0.4637 + 1.8044i -0.1916 + 1.8526i 0.0845 + 1.8601i 0.3587 + 1.8266i 0.6248 + 1.7530i 0.8771 + 1.6408i 1.1099 + 1.4925i 1.3181 + 1.3115i 1.4973 + 1.1017i 1.6434 + 0.8677i 1.7532 + 0.6147i 1.8243 + 0.3484i 1.8552 + 0.0745i 1.8453 - 0.2009i 1.7946 - 0.4717i 1.7045 - 0.7320i 1.5768 - 0.9760i 1.4145 - 1.1983i 1.2211 - 1.3941i 1.0008 - 1.5591i 0.7586 - 1.6896i 0.4999 - 1.7827i 0.2302 - 1.8365i -0.0443 - 1.8497i -0.3177 - 1.8221i -0.5840 - 1.7544i -0.8371 - 1.6479i -1.0717 - 1.5052i -1.2824 - 1.3293i -1.4647 - 1.1242i -1.6146 - 0.8944i -1.7287 - 0.6450i -1.8045 - 0.3816i -1.8405 - 0.1099i -1.8358 + 0.1641i -1.7905 + 0.4343i -1.7057 + 0.6946i -1.5833 + 0.9395i -1.4260 + 1.1634i -1.2372 + 1.3615i -1.0213 + 1.5293i -0.7829 + 1.6632i -0.5274 + 1.7602i -0.2604 + 1.8182i 0.0121 + 1.8360i 0.2842 + 1.8132i 0.5498 + 1.7503i 0.8030 + 1.6487i 1.0383 + 1.5107i 1.2504 + 1.3394i 1.4347 + 1.1386i 1.5871 + 0.9127i 1.7043 + 0.6668i 1.7836 + 0.4063i 1.8234 + 0.1371i 1.8228 - 0.1350i 1.7818 - 0.4039i 1.7014 - 0.6636i 1.5833 - 0.9084i 1.4303 - 1.1329i 1.2457 - 1.3321i 1.0337 - 1.5016i 0.7989 - 1.6378i 0.5466 - 1.7375i 0.2824 - 1.7986i 0.0122 - 1.8197i -0.2581 - 1.8006i -0.5224 - 1.7415i -0.7749 - 1.6438i -1.0100 - 1.5098i -1.2225 - 1.3424i -1.4077 - 1.1453i -1.5615 - 0.9230i -1.6805 - 0.6805i -1.7622 - 0.4230i -1.8046 - 0.1564i -1.8069 + 0.1135i -1.7692 + 0.3806i -1.6921 + 0.6390i -1.5776 + 0.8829i -1.4281 + 1.1071i -1.2471 + 1.3064i -1.0385 + 1.4766i -0.8071 + 1.6138i -0.5579 + 1.7150i -0.2966 + 1.7780i -0.0289 + 1.8014i 0.2392 + 1.7848i 0.5017 + 1.7285i 0.7528 + 1.6338i 0.9869 + 1.5029i 1.1989 + 1.3387i 1.3840 + 1.1449i 1.5381 + 0.9258i 1.6578 + 0.6864i 1.7406 + 0.4319i 1.7845 + 0.1680i 1.7887 - 0.0993i 1.7531 - 0.3642i 1.6785 - 0.6207i 1.5666 - 0.8631i 1.4200 - 1.0861i 1.2418 - 1.2846i 1.0363 - 1.4544i 0.8078 - 1.5916i 0.5616 - 1.6932i 0.3031 - 1.7570i 0.0381 - 1.7815i -0.2274 - 1.7664i -0.4876 - 1.7119i -0.7367 - 1.6193i -0.9691 - 1.4907i -1.1796 - 1.3290i -1.3636 - 1.1379i -1.5171 - 0.9216i -1.6365 - 0.6850i -1.7193 - 0.4333i -1.7637 - 0.1723i -1.7686 + 0.0924i -1.7342 + 0.3546i -1.6610 + 0.6087i -1.5509 + 0.8489i -1.4063 + 1.0699i -1.2304 + 1.2668i -1.0273 + 1.4352i -0.8015 + 1.5714i -0.5580 + 1.6723i -0.3023 + 1.7358i -0.0402 + 1.7604i 0.2225 + 1.7457i 0.4800 + 1.6920i 0.7265 + 1.6006i 0.9565 + 1.4735i 1.1648 + 1.3137i 1.3468 + 1.1246i 1.4986 + 0.9107i 1.6167 + 0.6766i 1.6985 + 0.4277i 1.7422 + 0.1695i 1.7470 - 0.0923i 1.7126 - 0.3516i 1.6400 - 0.6028i 1.5308 - 0.8402i 1.3875 - 1.0585i 1.2133 - 1.2529i 1.0121 - 1.4191i 0.7886 - 1.5532i 0.5476 - 1.6525i 0.2947 - 1.7147i 0.0355 - 1.7384i -0.2242 - 1.7231i -0.4786 - 1.6693i -0.7220 - 1.5782i -0.9489 - 1.4518i -1.1543 - 1.2931i -1.3336 - 1.1056i -1.4827 - 0.8935i -1.5985 - 0.6617i -1.6784 - 0.4153i -1.7205 - 0.1599i -1.7240 + 0.0987i -1.6888 + 0.3549i -1.6158 + 0.6027i -1.5067 + 0.8368i -1.3640 + 1.0518i -1.1908 + 1.2429i -0.9911 + 1.4060i -0.7694 + 1.5373i -0.5308 + 1.6339i -0.2805 + 1.6938i -0.0243 + 1.7156i 0.2322 + 1.6988i 0.4832 + 1.6440i 0.7230 + 1.5523i 0.9462 + 1.4259i 1.1480 + 1.2676i 1.3237 + 1.0811i 1.4694 + 0.8705i 1.5820 + 0.6406i 1.6589 + 0.3966i 1.6984 + 0.1440i 1.6998 - 0.1114i 1.6629 - 0.3641i 1.5887 - 0.6083i 1.4789 - 0.8384i 1.3360 - 1.0495i 1.1632 - 1.2367i 0.9645 - 1.3958i 0.7444 - 1.5233i 0.5078 - 1.6165i 0.2601 - 1.6731i 0.0069 - 1.6921i -0.2462 - 1.6729i -0.4934 - 1.6162i -0.7292 - 1.5231i -0.9482 - 1.3959i -1.1457 - 1.2374i -1.3171 - 1.0513i -1.4586 - 0.8418i -1.5671 - 0.6136i -1.6401 - 0.3719i -1.6762 - 0.1221i -1.6744 + 0.1301i -1.6350 + 0.3790i -1.5587 + 0.6191i -1.4475 + 0.8449i -1.3037 + 1.0514i -1.1308 + 1.2339i -0.9327 + 1.3884i -0.7137 + 1.5113i -0.4790 + 1.6001i -0.2338 + 1.6526i 0.0164 + 1.6678i 0.2658 + 1.6454i 0.5089 + 1.5859i 0.7403 + 1.4908i 0.9546 + 1.3621i 1.1471 + 1.2029i 1.3134 + 1.0167i 1.4499 + 0.8079i 1.5535 + 0.5811i 1.6219 + 0.3415i 1.6536 + 0.0945i 1.6479 - 0.1543i 1.6051 - 0.3993i 1.5260 - 0.6349i 1.4126 - 0.8559i 1.2674 - 1.0572i 1.0938 - 1.2344i 0.8958 - 1.3835i 0.6778 - 1.5011i 0.4447 - 1.5846i 0.2019 - 1.6322i -0.0451 - 1.6428i -0.2907 - 1.6164i -0.5295 - 1.5534i -0.7559 - 1.4553i -0.9650 - 1.3246i -1.1519 - 1.1640i -1.3125 - 0.9773i -1.4433 - 0.7688i -1.5412 - 0.5432i -1.6041 - 0.3056i -1.6306 - 0.0614i -1.6202 + 0.1838i -1.5731 + 0.4245i -1.4905 + 0.6553i -1.3743 + 0.8709i -1.2272 + 1.0666i -1.0524 + 1.2378i -0.8541 + 1.3807i -0.6367 + 1.4922i -0.4052 + 1.5697i -0.1648 + 1.6116i 0.0789 + 1.6169i 0.3206 + 1.5856i 0.5546 + 1.5184i 0.7757 + 1.4168i 0.9790 + 1.2834i 1.1598 + 1.1210i 1.3140 + 0.9334i 1.4382 + 0.7249i 1.5297 + 0.5003i 1.5863 + 0.2647i 1.6069 + 0.0234i 1.5910 - 0.2181i 1.5391 - 0.4543i 1.4523 - 0.6799i 1.3327 - 0.8897i 1.1830 - 1.0791i 1.0067 - 1.2437i 0.8077 - 1.3798i 0.5908 - 1.4845i 0.3607 - 1.5552i 0.1228 - 1.5906i -0.1176 - 1.5898i -0.3550 - 1.5529i -0.5840 - 1.4808i -0.7994 - 1.3752i -0.9963 - 1.2385i -1.1703 - 1.0738i -1.3175 - 0.8850i -1.4345 - 0.6764i -1.5188 - 0.4526i -1.5684 - 0.2189i -1.5823 + 0.0194i -1.5603 + 0.2570i -1.5027 + 0.4884i -1.4111 + 0.7083i -1.2876 + 0.9119i -1.1349 + 1.0944i -0.9567 + 1.2517i -0.7569 + 1.3804i -0.5402 + 1.4774i -0.3115 + 1.5407i -0.0761 + 1.5689i 0.1608 + 1.5613i 0.3936 + 1.5182i 0.6171 + 1.4406i 0.8263 + 1.3303i 1.0164 + 1.1899i 1.1830 + 1.0226i 1.3225 + 0.8323i 1.4316 + 0.6233i 1.5080 + 0.4003i 1.5499 + 0.1686i 1.5565 - 0.0666i 1.5276 - 0.3000i 1.4639 - 0.5262i 1.3669 - 0.7401i 1.2390 - 0.9368i 1.0829 - 1.1119i 0.9025 - 1.2614i 0.7017 - 1.3819i 0.4851 - 1.4707i 0.2579 - 1.5258i 0.0251 - 1.5461i -0.2080 - 1.5311i -0.4360 - 1.4812i -0.6537 - 1.3975i -0.8561 - 1.2821i -1.0388 - 1.1376i -1.1974 - 0.9674i -1.3286 - 0.7753i -1.4292 - 0.5658i -1.4970 - 0.3437i -1.5305 - 0.1140i -1.5291 + 0.1179i -1.4927 + 0.3468i -1.4223 + 0.5674i -1.3195 + 0.7748i -1.1867 + 0.9641i -1.0270 + 1.1312i -0.8441 + 1.2722i -0.6421 + 1.3838i -0.4258 + 1.4638i -0.2000 + 1.5101i 0.0300 + 1.5218i 0.2590 + 1.4988i 0.4817 + 1.4415i 0.6931 + 1.3513i 0.8884 + 1.2304i 1.0630 + 1.0815i 1.2131 + 0.9080i 1.3352 + 0.7141i 1.4266 + 0.5041i 1.4852 + 0.2829i 1.5097 + 0.0555i 1.4997 - 0.1729i 1.4553 - 0.3969i 1.3777 - 0.6115i 1.2687 - 0.8118i 1.1307 - 0.9933i 0.9671 - 1.1517i 0.7816 - 1.2835i 0.5784 - 1.3858i 0.3623 - 1.4561i 0.1382 - 1.4930i -0.0887 - 1.4956i -0.3133 - 1.4640i -0.5304 - 1.3988i -0.7350 - 1.3017i -0.9224 - 1.1749i -1.0885 - 1.0214i -1.2293 - 0.8446i -1.3418 - 0.6488i -1.4233 - 0.4383i -1.4721 - 0.2181i -1.4870 + 0.0068i -1.4678 + 0.2312i -1.4150 + 0.4499i -1.3298 + 0.6581i -1.2141 + 0.8508i -1.0708 + 1.0237i -0.9032 + 1.1729i -0.7150 + 1.2949i -0.5107 + 1.3871i -0.2950 + 1.4472i -0.0728 + 1.4741i 0.1508 + 1.4670i 0.3705 + 1.4263i 0.5814 + 1.3529i 0.7787 + 1.2485i 0.9578 + 1.1156i 1.1146 + 0.9572i 1.2456 + 0.7771i 1.3478 + 0.5794i 1.4188 + 0.3686i 1.4572 + 0.1497i 1.4619 - 0.0723i 1.4331 - 0.2924i 1.3714 - 0.5054i 1.2782 - 0.7065i 1.1557 - 0.8910i 1.0069 - 1.0548i 0.8351 - 1.1941i 0.6443 - 1.3057i 0.4390 - 1.3872i 0.2239 - 1.4365i 0.0039 - 1.4528i -0.2158 - 1.4356i -0.4302 - 1.3853i -0.6344 - 1.3033i -0.8238 - 1.1914i -0.9939 - 1.0522i -1.1408 - 0.8889i -1.2613 - 0.7055i -1.3525 - 0.5060i -1.4125 - 0.2952i -1.4398 - 0.0779i -1.4340 + 0.1409i -1.3951 + 0.3561i -1.3241 + 0.5628i -1.2226 + 0.7563i -1.0932 + 0.9320i -0.9387 + 1.0860i -0.7629 + 1.2147i -0.5696 + 1.3153i -0.3636 + 1.3854i

figure

subplot(2,1,1)

plot(Freq, Magn)

grid

subplot(2,1,2)

plot(Freq, Phse)

grid

How can I find the Transfer Function having Magnitude(dB), Phase(de... (6)

frd = idfrd(cplxv, Freq, 1/(2*Freq(end)))

frd =IDFRD model.Contains Frequency Response Data for 1 output(s) and 1 input(s).Response data is available at 2001 frequency points, ranging from 100 rad/s to 300 rad/s. Sample time: 0.0016667 secondsStatus: Created by direct construction or transformation. Not estimated.

figure

plot(Freq, imag(cplxv))

How can I find the Transfer Function having Magnitude(dB), Phase(de... (7)

NrPoles = nnz(islocalmax(imag(cplxv)))

NrPoles = 44

sys_tf = tfest(frd, 2, 1)

sys_tf = -19.56 s - 3578 ------------------------- s^2 + 0.9124 s + 1.296e04 Continuous-time identified transfer function.Parameterization: Number of poles: 2 Number of zeros: 1 Number of free coefficients: 4 Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.Status: Estimated using TFEST on frequency response data "frd".Fit to estimation data: 2.943% FPE: 188.8, MSE: 188.1

figure

compare(frd, sys_tf)

grid

How can I find the Transfer Function having Magnitude(dB), Phase(de... (8)

.

Mathieu NOE on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1885730

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1885730

hello @Star Strider

I believe Magn is given in dB (like in the plot)

so first think is to convert back to linear magnitude

Magn = 10.^(Magn/20) , and then

cplxv = Magn .* exp(1j*deg2rad(Phse))

Liang Kar Yan on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1885875

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1885875

Hi @Star Strider, thank you for your help.

Sign in to comment.

Sign in to answer this question.

Accepted Answer

Mathieu NOE on 14 Dec 2021

  • Link

    Direct link to this answer

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#answer_854770

  • Link

    Direct link to this answer

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#answer_854770

Open in MATLAB Online

hello

I tried a few options , IIR or FIR filters fit.

As the phase plot shows , there is a quite significant phase roll rate, idicating the presence of a huge delay in the system.

I assumed a sampling rate of Fs = 1000 hz and found out that more or less we can fit either a FIR or a IIr high pass filter in series with almost 200 samples of delay (hudge !!)

maybe there are more powerful tools then the simple invfreqz (not giving any good results here) or the manual fit I am doing here

FIR fit plot :

How can I find the Transfer Function having Magnitude(dB), Phase(de... (12)

IIR fit plot :

How can I find the Transfer Function having Magnitude(dB), Phase(de... (13)

clc

clearvars

Freq = readmatrix('Frequency.xlsx');

Magn_dB = readmatrix('Magnitude.xlsx');

Phse = readmatrix('Phase.xlsx');

figure(1)

subplot(211),plot(Freq,Magn_dB);

subplot(212),plot(Freq,Phse);

Magn = 10.^(Magn_dB/20) ;

%% high pass filter model (IIR)

Fs = 1000; % ? to be confirmed

N = 8; % filter order

dc_gain = Magn(end); % asymptotic value

[val,ind] = min(abs(Magn_dB - Magn_dB(end) + 5)); % - 5dB (vs dc_gain) cut off frequency index search

fc = Freq(ind); % - 5dB (vs dc_gain) cut off frequency

[b,a] = butter(N,2*fc/Fs,'high');

b = b*dc_gain; % apply dc gain on numerator

[g,p] = dbode(b,a,1/Fs,2*pi*Freq);

% adding delay due to sampling

nd = 200; % delay (samples)

rpd = -360*nd*Freq/Fs;

p = p+rpd; % adding filter phase to samples delay phase

p = mod(p,360);

p = p -180; % polarity correction

figure(1)

subplot(211),plot(Freq,Magn_dB,Freq,20*log10(g));

title('IIR model fit')

ylabel('Modulus (dB)');

subplot(212),plot(Freq,Phse,Freq,p);

xlabel('Frequency (Hz)');

ylabel('Phase (°)');% return

%% high pass filter model (FIR)

Fs = 1000; % ? to be confirmed

N = 20;

dc_gain = Magn(end); % asymptotic value

[val,ind] = min(abs(Magn_dB - Magn_dB(end) + 3)); % - 3dB (vs dc_gain) cut off frequency index search

fc = Freq(ind); % - 3dB (vs dc_gain) cut off frequency

[b,a] = fir1(N,2*fc/Fs,'high');

b = b*dc_gain; % apply dc gain on numerator

[g,p] = dbode(b,a,1/Fs,2*pi*Freq);

% adding delay due to sampling

Fs = 1000; % ? to be confirmed

nd = 200; % delay (samples)

rpd = -360*nd*Freq/Fs;

p = p+rpd; % adding filter phase to samples delay phase

p = mod(p,360);

p = p -180; % polarity correction

figure(2)

subplot(211),plot(Freq,Magn_dB,Freq,20*log10(g));

title('FIR model fit')

ylabel('Modulus (dB)');

subplot(212),plot(Freq,Phse,Freq,p);

xlabel('Frequency (Hz)');

ylabel('Phase (°)');

%% Id with invfreqz (FIR)

h = Magn .* exp(1j*180/pi*(Phse));

nb = 40+nd;

na = 1;

iter = 1000;

[bb,aa] = invfreqz(h,pi*Freq/Fs,nb,na,[],iter); % stable approximation to system

[g,p] = dbode(bb,aa,1/Fs,2*pi*Freq);

p = mod(p,360);

figure(3)

subplot(211),plot(Freq,Magn_dB,Freq,20*log10(g));

subplot(212),plot(Freq,Phse,Freq,p);

10 Comments

Show 8 older commentsHide 8 older comments

Liang Kar Yan on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1885870

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1885870

Hi @Mathieu NOE, thank you for your help. Is there any method to get the transfer function equation from the graph?

Mathieu NOE on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886055

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886055

Open in MATLAB Online

hello again

this is a method using ifft to fit a FIR model to a given complex FRF- it works on some examples like the one below

clc

clearvars

%

Fs = 1e3;

Freq = linspace(0,Fs/2,100);

b = fir1(48,[0.3 0.5]); % Window-based FIR filter design

frf = freqz(b,1,Freq,Fs);

if mod(length(frf),2)==0 % iseven

frf_sym = conj(frf(end:-1:2));

else

frf_sym = conj(frf(end-1:-1:2));

end

fir = real(ifft([frf frf_sym]));

frfid = freqz(fir,1,Freq,Fs);

figure(1)

subplot(211),plot(Freq,20*log10(abs(frf)),Freq,20*log10(abs(frfid)));

legend('FIR input model','identified FIR model');

subplot(212),plot(Freq,180/pi*angle(frf),Freq,180/pi*angle(frfid));

legend('FIR input model','identified FIR model');

but when I try to use it on your data , it fails ... ugh !

clc

clearvars

Fs = 1e3;

Freq = readmatrix('Frequency.xlsx');

Magn_dB = readmatrix('Magnitude.xlsx');

Phse = readmatrix('Phase.xlsx');

figure(1)

subplot(211),plot(Freq,Magn_dB);

subplot(212),plot(Freq,Phse);

Magn = 10.^(Magn_dB/20) ;

frf = Magn .* exp(1j*pi/180*(Phse)); % FRF complex

if mod(length(frf),2)==0 % iseven

frf_sym = conj(frf(end:-1:2));

else

frf_sym = conj(frf(end-1:-1:2));

end

fir = real(ifft([frf; frf_sym]));

frfid = freqz(fir,1,Freq,Fs);

figure(1)

subplot(211),plot(Freq,20*log10(abs(frf)),Freq,20*log10(abs(frfid)));

subplot(212),plot(Freq,180/pi*angle(frf),Freq,180/pi*angle(frfid));

Mathieu NOE on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886070

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886070

I think we could get a better result if your data was available on broader frequency range (from 0 to Fs/2) is Fs = sampling rate

Liang Kar Yan on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886080

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886080

Hi, thank you so much for your help. The frequency is actually at 100GHz to 300GHz.

Mathieu NOE on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886105

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886105

are you measuring an analog or digital filter / circuit ?

seems very high frequency range for anything digital ....

Mathieu NOE on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886115

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886115

Open in MATLAB Online

converting my code from 'Hz' to GHz by factor 10^9 is just making a new scale factor on the frequency axis , but not any impact on the FIR model output by itself

clc

clearvars

Freq = readmatrix('Frequency.xlsx'); % in Hz

Freq = Freq*1e9;% now in GHz

Fs = 2.56*max(Freq);

Magn_dB = readmatrix('Magnitude.xlsx');

Phse = readmatrix('Phase.xlsx');

figure(1)

subplot(211),plot(Freq,Magn_dB);

subplot(212),plot(Freq,Phse);

Magn = 10.^(Magn_dB/20) ;

frf = Magn .* exp(1j*pi/180*(Phse)); % FRF complex

if mod(length(frf),2)==0 % iseven

frf_sym = conj(frf(end:-1:2));

else

frf_sym = conj(frf(end-1:-1:2));

end

fir = real(ifft([frf; frf_sym]));

% fir = fir(1:end/4);

frfid = freqz(fir,1,Freq,Fs);

figure(1)

subplot(211),plot(Freq,20*log10(abs(frf)),Freq,20*log10(abs(frfid)));

subplot(212),plot(Freq,180/pi*angle(frf),Freq,180/pi*angle(frfid));

Liang Kar Yan on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886135

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886135

I'm actually designing a terahertz waveguide at 100GHz to 300GHz and want to observe the s parameters (for this data set is actually the s21 graph).

Liang Kar Yan on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886145

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886145

I think the first code is what I want and I manage to get the transfer function as well, thank you so much.

Mathieu NOE on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886195

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886195

this is maybe something for you

but beyong my limited time possibilities right now

all the best for the future

Liang Kar Yan on 14 Dec 2021

Direct link to this comment

https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886270

  • Link

    Direct link to this comment

    https://support.mathworks.com/matlabcentral/answers/1607890-how-can-i-find-the-transfer-function-having-magnitude-db-phase-degree-and-frequency-hz#comment_1886270

Thanks for the useful information.

Thank you.

Sign in to comment.

More Answers (0)

Sign in to answer this question.

See Also

Categories

Signal ProcessingSignal Processing ToolboxDigital and Analog FiltersDigital Filter Analysis

Find more on Digital Filter Analysis in Help Center and File Exchange

Tags

  • cst
  • transfer function

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

An Error Occurred

Unable to complete the action because of changes made to the page. Reload the page to see its updated state.


How can I find the Transfer Function having Magnitude(dB), Phase(de... (24)

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom(English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

How can I find the Transfer Function having Magnitude(dB), Phase(de... (2024)

FAQs

How do you find the magnitude of a transfer function in dB? ›

To calculate the magnitude of the transfer function, square the real part of the transfer function and the imaginary part of the transfer function. Add these two results together and then take the square root of the sum. The result is the magnitude of the transfer function, often expressed in decibels.

How do you find the magnitude and phase response? ›

A geometric way to obtain approximate magnitude and phase frequency responses is using the effects of zeros and poles on the frequency response of an LTI system. G ( s ) | s = j Ω 0 = K j Ω 0 − z j Ω 0 − p = K Z → ( Ω 0 ) P → ( Ω 0 ) .

How to find the phase response of a transfer function? ›

To obtain the phase response, we take the arctan of the numerator, and subtract from it the arctan of the denominator.

What is transfer function magnitude? ›

The magnitude of the transfer function is proportional to the product of the geometric distances on the s-plane from each zero to the point s divided by the product of the distances from each pole to the point.

What is the formula for magnitude in DB? ›

ydb = mag2db( y ) expresses in decibels (dB) the magnitude measurements specified in y . The relationship between magnitude and decibels is ydb = 20 log10( y ).

What is the magnitude and phase of a function? ›

The magnitude describes the strength of each frequency in the signal. The phase describes the sine/cosine phase of each frequency. The phase can also be thought of as the relative proportion of sines and cosines in the signal (i.e., a phase of zero contains only cosines and a phase of 90 degrees contains only sines).

What is the relationship between phase and magnitude? ›

The magnitude is the square root of the sum of the squares of the real and imaginary parts. The phase is relative to the start of the time record or relative to a single-cycle cosine wave starting at the beginning of the time record. Single-channel phase measurements are stable only if the input signal is triggered.

How do you find the magnitude and phase of impedance? ›

Impedance in circuits

This is less mathematical and requires an appreciation that a sinusoidal curve can be constructed by a rotating vector arrow (seen in SHM), and a knowledge of Pythagoras. Here Z0​ is the magnitude of Z so Z0​=X2+Y2 ​ and ϕ is the phase of Z which has the value ϕ=arctan(XY​).

How do you calculate transfer function? ›

To find the transfer function, first take the Laplace Transform of the differential equation (with zero initial conditions). Recall that differentiation in the time domain is equivalent to multiplication by "s" in the Laplace domain. The transfer function is then the ratio of output to input and is often called H(s).

How to calculate magnitude ratio? ›

You can take the ratio of the magnitudes of the two vectors, determined using the formula: |v| = sqrt(n_1^2 + n_2^2 + n_3^2 + ……) Then it is just a case of dividing the one by the other and you will have your ratio.

What is transfer function in dB? ›

A transfer function is defined as the ratio of the frequency domain output voltage to the frequency domain input voltage (i.e. Gain) with all initial conditions equal to zero. Transfer functions are defined only for linear systems. Transfer functions can usually be expressed as the ratio of two polynomials.

Why do we calculate transfer function? ›

Transfer functions are commonly used in the analysis of systems such as single-input single-output filters in signal processing, communication theory, and control theory. The term is often used exclusively to refer to linear time-invariant (LTI) systems.

What is the magnitude of the high pass transfer function? ›

The High-Pass Transfer Function

The magnitude response at ωO will be 3 dB below the maximum magnitude response; with a passive filter, the maximum magnitude response is unity, in which case the value at ωO is –3 dB. The absolute value of the circuit's phase shift at ωO will be 45°.

How do you find the magnitude of a charge transfer? ›

The magnitude of charge transferred can be calculated using the formula Q1 - Q2 /2. The correct order of increasing magnitude of charge transferred is D < C = A < B.

How do you convert decibels to magnitude? ›

For value like power "Mag = 10^(dB/10)" is correct.

What is transfer function in DB? ›

A transfer function is defined as the ratio of the frequency domain output voltage to the frequency domain input voltage (i.e. Gain) with all initial conditions equal to zero. Transfer functions are defined only for linear systems. Transfer functions can usually be expressed as the ratio of two polynomials.

Top Articles
Latest Posts
Article information

Author: Ms. Lucile Johns

Last Updated:

Views: 6067

Rating: 4 / 5 (61 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Ms. Lucile Johns

Birthday: 1999-11-16

Address: Suite 237 56046 Walsh Coves, West Enid, VT 46557

Phone: +59115435987187

Job: Education Supervisor

Hobby: Genealogy, Stone skipping, Skydiving, Nordic skating, Couponing, Coloring, Gardening

Introduction: My name is Ms. Lucile Johns, I am a successful, friendly, friendly, homely, adventurous, handsome, delightful person who loves writing and wants to share my knowledge and understanding with you.